

Datos Generales

Asignatura: MATEMÁTICA DISCRETA

Titulación: GRADO EN CIBERSEGURIDAD

Carácter: BÁSICA

Créditos ECTS: 6 ECTS

Curso: 1º

Distribución temporal: semestre, año, etc.: 1ER SEMESTRE

Idioma de impartición: CASTELLANO

Equipo docente: Yovana Cabrera <u>vovana.cabrera@euneiz.com</u>

Presentación de la asignatura:

Asignatura teórico-práctica que permita al alumno adquirir los conocimientos de matemática discreta necesarios para el posterior uso en el ámbito de la ciberseguridad y especialmente la criptografía.

Datos Específicos

Resultados del proceso de formación y aprendizaje (RFA)

	C1	Desarrollar habilidades de cálculo para el análisis en los
		lenguajes de programación.
Contenidos o	C5	Realizar desarrollos seguros y aplicar contramedidas a nivel
conocimientos (C)		de código.
	C14	Valorar los riesgos que suceda un determinado suceso
		mediante métodos estadísticos y probabilísticos.
Competencias (CO)	CO1	Usar y programar ordenadores, sistemas operativos, redes,
		bases de datos y el entorno de la nube para su aplicación en
		la ciberseguridad.
	CO4	Realizar diseños de ingeniería aplicados a la ciberseguridad.
	CO6	Utilizar de forma segura los lenguajes de programación más
		utilizados para su implementación en situaciones reales.
	CO7	Implementar soluciones criptográficas.
Destrezas o	H1	Trabajar en grupo transmitiendo conocimientos y habilidades
habilidades (H)	111	adquiridos.

	Desarrollar habilidades para el análisis, la elaboración y la
H2	colaboración en proyectos, partiendo de las necesidades
	propias del mercado.
H6	Ser capaz de trabajar con información técnica en inglés, tanto
ПО	a nivel de consulta como de su elaboración.

Contenido de la Asignatura*

- Lógica.
- Álgebra de Boole.
- Teoría de conjuntos.
- Teoría de números.
- Aritmética modular.

(*El contenido desarrollado está disponible en la Programación Docente de la asignatura publicada en el Campus Virtual de la Universidad)

Metodologías Docentes y Actividades Formativas

Metodologías docentes utilizadas en esta asignatura son:

MD1	Método expositivo
MD2	Estudio de casos
MD3	Aprendizaje basado en problemas
MD4	Aprendizaje basado en proyectos
MD5	Aprendizaje cooperativo
MD6	Tutorías

Actividades formativas utilizadas en esta asignatura son:

Actividades formativas	Horas previstas	% presencialidad	
AF1: Clase teórica	30	100	
AF2: Clase prácticas	16	100	

AF3: Realización de trabajos (individuales y/o grupales)	6	50
AF4: Tutorías (individuales y/o grupales)	3	50
AF5: Estudio independiente y trabajo autónomo del estudiante	90	0
AF6: Pruebas de evaluación	3	100
AF9 Clases en laboratorio	2	100
Total	150	

Evaluación: Sistemas y Criterios de Evaluación

Sistemas de evaluación utilizados en esta asignatura son:

Denominación		Pond. Máx
SE1 Evaluación de la asistencia y participación del estudiante	0	5
SE2 Evaluación de trabajos	10	20
SE3 Pruebas de evaluación y/o exámenes	50	80
SE6 Evaluación de laboratorios	10	20

El estudiantado posee dos opciones de evaluación para superar la asignatura:

- Evaluación continua con 2 convocatorias/año: ordinaria y extraordinaria.
- Evaluación única con una convocatoria/año.
- En la Universidad Euneiz la evaluación continua (media ponderada de las diferentes actividades evaluables de la asignatura definidas por el profesorado) es la evaluación primordial; pero Euneiz permite al estudiante acogerse a la evaluación única (examen único).
- No se permite el cambio del sistema de evaluación escogido por el estudiante a lo largo del curso.

- El estudiante que desee acogerse a la evaluación única deberá solicitarlo por escrito formal que lo justifique dirigido al profesorado responsable de la asignatura y a la Coordinación del título en las dos primeras semanas del inicio del curso.
- Si el estudiante no asiste un 80% a las clases presenciales no podrá presentarse a la convocatoria ordinaria y pasará automáticamente a convocatoria extraordinaria.
- Las faltas de asistencia deben justificarse al profesor responsable de la asignatura.
- De manera excepcional, el docente responsable de la asignatura podrá valorar con otros criterios adicionales como la participación, la actitud, el grado de desempeño y aprovechamiento del estudiante, etc. la posibilidad de permitir que el estudiante continué en la convocatoria ordinaria, siempre que su asistencia mínima se encuentre por encima del 70%.
- El estudiante irá a la evaluación extraordinaria ÚNICAMENTE con las partes suspendidas.
- El sistema de calificación de la asignatura sigue lo establecido en el RD 1125/2003 y los resultados obtenidos se calificarán siguiendo la escala numérica de 0 a 10, con expresión de un decimal.
 - o 0-4,9: Suspenso (SS).
 - o 5,0-6,9: Aprobado (AP).
 - o 7,0-8,9: Notable (NT).
 - 9,0-10: Sobresaliente (SB)
- La mención de «Matrícula de Honor» podrá ser otorgada a alumnos que hayan obtenido una calificación igual o superior a 9.0. Su número no podrá exceder del cinco por ciento de los alumnos matriculados en una materia en el correspondiente curso académico, salvo que el número de alumnos matriculados sea inferior a 20, en cuyo caso se podrá conceder una sola «Matrícula de Honor»
- Será considerado no presentado (NP) el estudiante matriculado que no realice ninguna actividad evaluativa.
- Toda actividad evaluativa escrita (trabajos, exámenes...) considerará las faltas orto tipográficas en la calificación final.
- El plagio está prohibido tanto en los trabajos como en los exámenes, en caso de detectarse la calificación será suspenso. Los trabajos entregados a través del campus virtual serán objeto de análisis por la herramienta Turnitin:
 - Los informes con un índice de similitud entre el 20% y el 30% serán revisados por el profesor para analizar las posibles fuentes de plagio y evaluar si están

justificadas.

o Cualquier trabajo con un índice de similitud superior al 30% no será evaluado.

Bibliografía y otros Recursos de Aprendizaje

Bibliografía Básica

 Rosen, Kenneth H. Discrete Mathematics and its Applications, 7th (8th) Edition. The McGraw Hill Companies, 2011 (2019).

Bibliografía Complementaria

- Bujalance, E.; Bujalance, J.A.; Costa, A.F.; Martinez, E. (1993). Elementos de Matemática discreta. Ed. Sanz y Torres
- Veerarajan, T. (2008). Matemática Discreta con teoría de gráficas y combinatoria, Ed.
 McGraw-Hill Interamericana.

Otros Recursos de Aprendizaje Recomendados

- Mathematics for Computer Science (Fall 2010) MIT Open Course Ware: https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-fall-2010/
- Mathematics for Computer Science (Fall 2015) MIT Open Course Ware: https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-spring-2015/
- MIT 6.042J Mathematics for Computer Science, Spring 2015 Playlist https://www.youtube.com/playlist?list=PLUI4u3cNGP60UlabZBeeqOuoLuj KNph