

Datos Generales

Asignatura: METODOLOGÍA DE PROGRAMACIÓN

Titulación: GRADO EN MULTIMEDIA

Carácter: OBLIGATORIA Créditos ECTS: 6 ECTS

Curso: 2º

Distribución temporal: semestre, año, etc.: 1r SEMESTRE

Idioma de impartición: CASTELLANO

Equipo docente: Patxi Galán

Presentación de la asignatura:

Asignatura teórico-práctica para el desarrollo y aprendizaje de estructuras de datos y algoritmos.

Datos Específicos

Resultados del proceso de formación y aprendizaje (RFA)¹

	RA5	Aplicar la programación estructurada básica y sus datos.		
Contenidos (CON)	RA6	Utilizar los computadores y hardware necesario para este		
		ámbito.		
Habilidades (COM)	CG2	Realizar mediciones, cálculos, valoraciones, estudios,		
		informes y otros trabajos análogos relacionados con el ámbito		
		del estudio.		
	CG4	Trabajar en equipo, participando activamente en las tareas y		
		siendo capaz de comunicarse adecuadamente en todos los		
		ámbitos.		
	CG5	Sintetizar materias básicas, narrativas, psicológicas,		
		tecnológicas y estéticas, que les capaciten para el aprendizaje		
		de nuevos métodos y teorías, y les doten de versatilidad para		
		adaptarse a nuevas situaciones.		
	CG6	Ser hábil en la comunicación, tanto por escrito como		
		verbalmente, en el idioma propio y en otras lenguas		
		extranjeras.		
	CG7	Saber elaborar y defender argumentos y resolver problemas		

¹ La clasificación de los RFA corresponde a la definida en el RD822/2021 y se encuentran definidos en la memoria de verificación del título.

		dentro del área de estudio, convirtiendo un problema empírico
		en un objetivo de investigación y presentar conclusiones.
Destrezas (H)	CE2	Utilizar lenguajes de programación y desarrollo, bases de
		datos y metodologías software relacionados con la Informática
		y la Multimedia.
	CE4	Integrar la estructura y arquitectura de los computadores, el
		Álgebra de "Boole", los sistemas combinacionales y la
		arquitectura hardware a las metodologías de ámbito "Maker"
		presentes en la Multimedia.

Contenido de la Asignatura²

En esta asignatura se estudiará:

- 1. Entornos de desarrollo
 - 1.1. Tipos de lenguajes y características: C#, C++, Python
 - 1.2. Herramientas para el entorno de desarrollo
 - 1.2.1.IDE
 - 1.2.2.Git
 - 1.2.3.Docker
 - 1.2.4. Monitorización de recursos
 - 1.2.5. Variables de entorno
- 2. Arquitecturas software
 - 2.1. Modelos basados en capas
 - 2.2. Modelo vista controlador
 - 2.3. Arquitecturas P2P
 - 2.4. Otras arquitecturas
- 3. Estructuras de datos
 - 3.1. Definición
 - 3.2. Tipos
 - 3.2.1. Datos lineales
 - 3.2.2. Estructuras de árbol
 - 3.2.3. Tablas asociativas
- 4. Orientación a objetos y patrones de diseño

² Se debe incluir el índice de temas a tratar punto por punto (sin desarrollar). Se pueden incluir hasta tres subapartados con ideas claves/subtemas. La extensión máxima será de 2 páginas.

- 4.1. Qué es programación orientada a objetos (OOP)
- 4.2. Patrones de software
- 5. Algoritmos de ordenación y métricas
 - 5.1. Tipos de Algoritmos
 - 5.2. Eficiencia de un algoritmo
 - 5.3. Algoritmos de ordenación
- 6. Otros conceptos
 - 6.1. Librerías
 - 6.2. Localización
 - 6.3. Streams de datos
 - 6.4. Serialización
 - 6.5. Multithreading
 - 6.6. Conexiones de red

Metodologías Docentes y Actividades Formativas³

Metodologías docentes utilizadas en esta asignatura son:

MD1	Método expositivo
MD2	Estudio de casos
MD3	Aprendizaje basado en problemas
MD4	Aprendizaje basado en proyectos
MD5	Aprendizaje cooperativo
MD6	Tutorías

Actividades formativas utilizadas en esta asignatura son:

Actividades formativas	Horas previstas	% presencialidad
AF1: Clase teórica	22	100

³ Se deberán extraer de la memoria verificada del título las metodologías docentes, actividades formativas y sistemas de evaluación. (1 ECTS = 25 horas de trabajo del estudiante).

AF2: Clase prácticas	22	100
AF3: Realización de trabajos (individuales y/o grupales)	40	10
AF4: Tutorías (individuales y/o grupales)	10	50
AF5: Estudio independiente y trabajo autónomo del estudiante	50	0
AF6: Pruebas de evaluación	6	0
Total	150	

Evaluación: Sistemas y Criterios de Evaluación

Sistemas de evaluación utilizados en esta asignatura son:

Denominación	Pond. mín.	Pond. Máx
SE1 Evaluación de la asistencia y participación del estudiante	0	10
SE2 Evaluación de trabajos	0	90
SE3 Pruebas de evaluación y/o exámenes		100

- o El estudiantado posee dos opciones de evaluación para superar la asignatura:
- Evaluación continua con 2 convocatorias/año: ordinaria y extraordinaria.
- Evaluación única con una convocatoria/año.
- En la Universidad Euneiz la evaluación continua (media ponderada de las diferentes actividades evaluables de la asignatura definidas por el profesorado) es la evaluación primordial; pero Euneiz permite al estudiante acogerse a la evaluación única (examen único).

- No se permite el cambio del sistema de evaluación escogido por el estudiante a lo largo del curso.
- El estudiante que desee acogerse a la evaluación única deberá solicitarlo por escrito formal que lo justifique dirigido al profesorado responsable de la asignatura y a la Coordinación del título en las dos primeras semanas del inicio del curso.
- Si el estudiante no asiste un 80% a las clases presenciales no podrá presentarse a la convocatoria ordinaria y pasará automáticamente a convocatoria extraordinaria.
- Las faltas de asistencia deben justificarse al profesor responsable de la asignatura.
- De manera excepcional, el docente responsable de la asignatura podrá valorar con otros criterios adicionales como la participación, la actitud, el grado de desempeño y aprovechamiento del estudiante, etc. la posibilidad de permitir que el estudiante continué en la convocatoria ordinaria, siempre que su asistencia mínima se encuentre por encima del 70%.
- El estudiante irá a la evaluación extraordinaria ÚNICAMENTE con las partes suspendidas.
- El sistema de calificación de la asignatura sigue lo establecido en el RD 1125/2003 y los resultados obtenidos se calificarán siguiendo la escala numérica de 0 a 10, con expresión de un decimal.
 - o 0-4,9: Suspenso (SS).
 - o 5,0-6,9: Aprobado (AP).
 - o 7,0-8,9: Notable (NT).
 - 9,0-10: Sobresaliente (SB)
- La mención de «Matrícula de Honor» podrá ser otorgada a alumnos que hayan obtenido una calificación igual o superior a 9.0. Su número no podrá exceder del cinco por ciento de los alumnos matriculados en una materia en el correspondiente curso académico, salvo que el número de alumnos matriculados sea inferior a 20, en cuyo caso se podrá conceder una sola «Matrícula de Honor»
- Será considerado no presentado (NP) el estudiante matriculado que no realice ninguna actividad evaluativa.
- Toda actividad evaluativa escrita (trabajos, exámenes...) considerará las faltas orto tipográficas en la calificación final.
- El plagio está prohibido tanto en los trabajos como en los exámenes, en caso de detectarse la calificación será suspenso. Los trabajos entregados a través del campus

virtual serán objeto de análisis por la herramienta Turnitin:

- Los informes con un índice de similitud entre el 20% y el 30% serán revisados por el profesor para analizar las posibles fuentes de plagio y evaluar si están justificadas.
- o Cualquier trabajo con un índice de similitud superior al 30% no será evaluado.

Bibliografía y otros Recursos de Aprendizaje

Bibliografía Básica

- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms.
 MIT press.
- Narasimha Karumanchi, N. K. (2017). Data Structures And Algorithms Made Easy. Career Monk.
- Sedgewick, R., & Wayne, K. (2014). Algorithms: Part I. Addison-Wesley Professional.
- Severance, C. R. (2009). Python para todos.

Bibliografía Complementaria

- Bhargava, A. (2016). Grokking Algorithms: An illustrated guide for programmers and other curious people. Simon and Schuster.
- Skiena, S. S. (1998). The algorithm design manual (Vol. 2). New York: springer.
- Heineman, G. T., Pollice, G., & Selkow, S. (2016). Algorithms in a nutshell: A practical guide.
 "O'Reilly Media, Inc.".
- Miller, B. N., & Ranum, D. L. (2011). Problem solving with algorithms and data structures using python Second Edition. Franklin, Beedle & Associates Inc.
- Burnette, E. (2005). Eclipse IDE Pocket Guide: Using the Full-Featured IDE. "O'Reilly Media, Inc.".
- Matthes, E. (2023). Python crash course: A hands-on, project-based introduction to programming. no starch press.
- Barry, P. (2016). Head first Python: A brain-friendly guide. "O'Reilly Media, Inc.".

Otros Recursos de Aprendizaje Recomendados⁴

https://www.python.org/

-

⁴ Entre otros recursos de aprendizaje pueden incluirse páginas web, software, materia audiovisual, etc.